博碩士論文 986204016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.128.205.109
姓名 李沂錡(Yi-Chi Lee)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 澳洲煤樣物化特性實驗與氣體封存關聯性研究
(Physical and chemical characteristic studies in related with gas storage in Australian coals)
相關論文
★ 有機質成熟度之染色技術應用★ 臺灣中新世石底層煤中硫及微量元素含量之沉積涵義
★ 煤素質組成對熱裂分析之影響★ 大屯火山群地熱氣與溫泉水之地化特性
★ 灰關聯分析於水庫水質綜合評判之研究 —以翡翠及石門水庫為例★ 土石流誘發因子萃取對土石流危險溪流判定之影響
★ 石油系統之有機材料與熱成熟度特性探討★ 石油系統有機材料特性及熱成熟度與油氣潛能之關係探討:以澳洲西北海域為例
★ 車籠埔斷層深鑽岩心鏡煤素反射率研究★ 從岩石風化速率探討南橫山崩 -以敏督莉颱風為例
★ 廢棄礦場環境影響綜合評估★ 河流縱剖面與構造地形指標之量化分析: 以濁水溪為例
★ 九份-金瓜石地區火成作用對有機物成熟度之影響★ 不同成熟度之有機成分探討
★ 石門水庫上游集水區水質與復興鄉人文環境之綜合研究★ 鏡煤素反射率抑制問題與熱模擬之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全球能源需求日益增加,對於新替代能源的開發利用逐漸重視,其中以煤層氣 (Coal Bed Methane)為近幾年熱門的研究之一。本研究選用來自澳洲鮑溫及雪梨盆地二疊紀之煤樣,欲評估煤層氣在地層中的含量,頇先了解煤的物化特性。針對煤的物性作Langmuir表面積、孔隙體積、工業分析、孔隙率與滲透率等量測,而化性則進行鏡煤素反射率、煤素質組成分析、熱裂分析與元素分析等詴驗。研究目的為瞭解煤之氣體吸附特性,並利用其物化特性與氣體吸附量的差異作比對用以探討與氣體封存之關聯性。實驗結果顯示樣本鏡煤素反射率介於0.54~1.03%,裂解溫度 (Tmax)則為433~439℃,揮發份含量約在23.81~28.95%,屬於未成熟至成熟之高揮發份煙煤,利用Langmuir 等溫吸附線表示澳洲六個煤樣之氣體吸附量,其中最大為鮑溫盆地之B2、最低為雪梨盆地之S1與S2,主要影響等溫吸附線的因子為煤樣表面積與孔隙體積,孔隙體積越多相對表面積也就越大,其氣體吸附量也就越多。伴隨煤的演化會使次生孔隙與孔隙體積增加且割理和裂隙發育更發達,相較煤素質組成則對孔隙體積影響不大。由於裂隙為煤層的流體快速傳輸路徑,B3煤樣有較高滲透率與孔隙率是因發達且連續性裂隙所致,故相對其餘滲透率偏低的澳洲煤樣來說,B3具較佳氣體封存經濟效益。
摘要(英) Global energy demand for the development and utilization of new alternative energy is increasing for a long time, in which CBM (Coal Bed Methane) is one of the popular research topics in recent years. The purpose of this study is to perform a series of physical and chemical characteristic studies of coal, so as to understand the relation between coal properties and gas adsorption storage. Permian coals from Bowen and Sydney Basin, Australia, were examined in this study. The results showed that vitrinite reflectance is ranged 0.54~1.03%, composed mostly of vitrinite, and classified as immatured to matured high volatile bituminous coal. Langmuir adsorption isotherm indicates B2 from Bowen Basin possesses the highest adsorption capacity, where as S1 and S2 from Sydney Basin exhibit the lowest adsorption capacity. The difference in adsorption isotherm is mainly controlled by surface area and volume of pores. Both secondary porosity and pore volume increased with cleats and fractures developed after coalification. The influence of maceral composition is relatively less important. Most of the permeability of coal is low in samples studied, except B3 coal exhibits the highest permeability and porosity, which can be attributed to well developed and connected fractures. B3 is believed to be the most promising target for gas sequestration.
關鍵字(中) ★ 煤
★ 物化特性
★ 等溫吸附
關鍵字(英) ★ physical and chemical characteristics
★ coal
★ adsorption
論文目次 摘要............................................................................................................i
ABSTRACT ............................................................................................... ii
誌謝 ........................................................................................................... iii
目錄 ........................................................................................................... iv
圖目錄 ..................................................................................................... viii
表目錄 ...................................................................................................... xii
符號說明 ................................................................................................. xiv
第一章 緒論........................................................................................ - 1 -
1.1 緣起 ............................................................................................. - 1 -
1.2 研究動機與目的 ......................................................................... - 1 -
1.3 內文概述 ..................................................................................... - 2 -
第二章 文獻回顧 ............................................................................... - 3 -
2.1 煤之基本性質 ............................................................................. - 3 -
2.1.1 材料性質 ............................................................................... - 3 -
2.1.2 成煤作用 ............................................................................... - 6 -
2.2 煤層氣 ....................................................................................... - 10 -
v
2.2.1煤層之氣體吸附 .................................................................. - 11 -
2.2.2 煤層之氣體封存 ................................................................. - 15 -
第三章 研究方法 ............................................................................. - 17 -
3.1 研究流程 ................................................................................... - 17 -
3.2 物理特性分析 ........................................................................... - 19 -
3.2.1 表面積分析 ......................................................................... - 19 -
3.2.2 工業分析 ............................................................................. - 22 -
3.2.3 氣體滲透率測定 ................................................................. - 26 -
3.2.4 孔隙率量測 ......................................................................... - 27 -
3.2.5 掃描式電子顯微鏡觀測 ..................................................... - 31 -
3.3 有機地球化學分析 ................................................................. - 34 -
3.3.1 煤餅製作與拋光 ................................................................. - 34 -
3.3.2 煤素質成份分析 ................................................................. - 36 -
3.3.3 鏡煤素反射率量測 ............................................................. - 38 -
3.3.4 元素分析 ............................................................................. - 39 -
3.3.5 Rock-Eval熱裂分析 ......................................................... - 42 -
第四章 結果與討論 ......................................................................... - 44 -
vi
4.1 煤岩材料特性 ........................................................................... - 44 -
4.1.1 鏡煤素反射率 ..................................................................... - 44 -
4.1.2 煤素質組成 ......................................................................... - 47 -
4.1.3 元素百分比組成 ................................................................. - 48 -
4.1.4 裂解溫度 ............................................................................. - 49 -
4.1.5 水份、灰份與可燃份 ......................................................... - 51 -
4.2 孔隙與裂隙型態 ....................................................................... - 54 -
4.2.1 孔徑尺寸 ............................................................................. - 54 -
4.2.2 孔隙體積 ............................................................................. - 55 -
4.2.3 孔隙率與滲透率 ................................................................. - 57 -
4.2.4 煤樣顯微結構 ..................................................................... - 59 -
4.3 等溫吸附線 ............................................................................... - 62 -
4.3.1 等溫吸附線類型 ................................................................. - 62 -
4.3.2 吸附量與表面積 ................................................................. - 64 -
4.4 影響孔隙發育之因素 ............................................................... - 70 -
4.4.1 煤岩材料 ............................................................................. - 70 -
4.4.2 成熟作用 ............................................................................. - 72 -
vii
4.5 裂隙發育與氣體封存之關聯性 ............................................... - 75 -
第五章 結論與建議 ......................................................................... - 77 -
參考文獻 .............................................................................................. - 78 -
附錄 ...................................................................................................... - 84 -
A. 測量滲透率之詴體 ................................................................... - 84 -
B. 量測滲透率詴體之直徑與厚度 ............................................... - 86 -
C. 煤素質成分百分比 ................................................................... - 87 -
D. 鏡煤素反射率分析 ................................................................... - 89 -
E. 孔隙率量測數據 ....................................................................... - 95 -
F. 氮氣吸附實驗數據 ................................................................... - 96 -
G. 熱裂分析結果 ......................................................................... - 105 -
H. 掃描式電子顯微鏡觀測結果 ................................................. - 106 -
參考文獻 ﹝1﹞ 台灣因應氣候變化綱要公約資訊網,京都議定書。
http://www.tri.org.tw/unfccc/Unfccc/UNFCCC02.htm.
﹝2﹞ Ting, F. T. C., ―Petrographic techniques in coal analysis‖, In:
Karr, C., Jr. (Eds.): Analytical Methods for Coal and Coal Products. Academic Press, New York, 3-26, 1978.
﹝3﹞ Stopes, M. C., ―On the four visible ingredients in banded bituminous coals‖, studies in the composition of coal No. 1, Proc. R. Soc. London , 90B, 470-487, 1919.
﹝4﹞ Stopes, M. C.,―On the petrology of banded bituminous coals‖, Fuel, 14, 4-13, 1935.
﹝5﹞ Stach, E., Mackowsky, T. M., Teichmüller, Taylor, G. H., Chandra, D. and Teichmüller, R., ―Stach’s Textbook of coal petrology‖, Berlin Stuttgar, Gebruder Borntraeger, 1982.
﹝6﹞ Ting, F. T. C., ―Coal macerals‖, In: R. Meyers, Editor, Coal Structure, Academic Press, New York, 7-49, 1982.
﹝7﹞ ASTM, Standard D-2797, ASTM Standard manual, 26, 350-354, 1975.
﹝8﹞ Cui, X., Bustin, R.M., and Dipple, G., ―Selective transport of CO2, CH4 and N2 in coals: insights from modeling of experimental gas adsorption data‖, Fuel, 83, 293-303, 2004.
﹝9﹞ Kentucky Geological Survey.
http://www.uky.edu/KGS/coal/coalform.htm.
- 79 -
﹝10﹞ ASTM, Classification of coals by rank, D 388-77, 1977.
﹝11﹞ International Union of Pure and Applied Chemistry, ―Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity‖, 54, 2201-22l8, 1982.
http://www.iupac.org/publications/pac/pdf/1982/pdf/5411x2041.pdf
﹝12﹞ Rodrigues, C. F., and Lemos de Sousa, M. L., ―The measurement of coal porosity with different gases‖, International Journal of Coal Geology , 48, 245-251, 2002.
﹝13﹞ Moffat, D. H., and Weale, K. E., ―Sorption by coal of methane at high pressures‖, Fuel, 34, 449-462, 1955.
﹝14﹞ Levy, J. H., Day S. J., and Killingley, J. S., ―Methane capacities of Bowen Basin coals related to coal properties‖, Fuel, 76, 813-819, 1997.
﹝15﹞ Crosdale, P. J., Beamish, B. B., and Valix, M., ―Coalbed methane sorption related to coal composition‖, International Journal of Coal Geology, 35, 147-158, 1998.
﹝16﹞ Meissner, F. F., ―Cretaceous and lower Tertiary coals as sources for gas accumulations in the Rocky Mountain area. In: Woodward, J., Meissner, F.F., Clayton, J.L. (Eds.)‖, Source Rocks of the Rocky Mountain Region. Rocky Mountain Association of Geologists, 401-431, 1984.
- 80 -
﹝17﹞ 梁冰,孫可明,“低滲透煤層氣開採理論及其應用”,科學出版社,民國九十五年。
﹝18﹞ Ruthven, D. M., ―Principles of Adsorption and Adsorption Processes, John Wiley & Sons Inc‖, 1984.
﹝19﹞ Brunauer, S., Deming, L. S., Deming, W. E., Teller, E., ―A theory of Van der Waals adsorption of gases‖, Journal of the American Chemical Society, 62, 1723-1732, 1940.
﹝20﹞ Langmuir, I., ―The adsorption of gases on plan surface of glass, mica and platinum‖, The Journal of American Chemical Society, 40, 1361-1403 , 1918.
﹝21﹞ Brunauer, S., Emmett P., and H., Teller, E., ―Adsorption of gases in multimolecular layers‖, Journal of the American Chemical Society, 60, 309-19, 1938.
﹝22﹞ Saghafi, A., Faiz, M. M., and Roberts, D., ―CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia‖, International Journal of Coal Geology, 70, 240-254, 2007.
﹝23﹞ Mastelerz, M. Gluskoter, H., and Rupp, J., ―Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana‖, International Journal of Coal Geology, 60, 43-55, 2004.
- 81 -
﹝24﹞ Clarkson, C. R., and Bustin, R. M., ―Variation in permeability with lithotype and maceral composition of Cretaceous coals of the Canadian Cordillera‖, International Journal of Coal Geology, 33, 135-151, 1997.
﹝25﹞ Hunt, J. M., ―Petroleum geochemistry and geology: San Francisco‖, W. H. Freeman and Company, 617, 1979.
﹝26﹞ EAGE. http://fb.eage.org/content.php?id=28768.
﹝27﹞ 黃富昌,―土壤結構及化性對有機污染物吸/脫附特性之研究‖,國立中央大學環境工程研究所,博士論文,民國九十三年。
﹝28﹞ Thomas, L., ―Coal as Substance. Handbook of Practical Coal Geology‖, John Wiley and Sons Limited, 4, 1992.
﹝29﹞ 劉保淇,―煤層孔隙率與滲透率特性評估‖,國立中央大學應用地質研究所,碩士論文,民國九十九年。
﹝30﹞ 孫立中,―抑制鏡煤素反射率之量測成因-以分離台灣裕峰煤為例‖,國立中央大學地球物理研究所,博士論文,民國八十九年。
﹝31﹞ ASTM, Standard D-2799. Microscopical determination of volume percent of physical components in a polished specimen of coal, ASTM, Philadephia, Pa, 1-4, 1980.
﹝32﹞ Bustin, R. M., ―Quantifying macerals: some statistical and practical considerations‖, International journal of coal geology, 17, 213-238, 1991.
- 82 -
﹝33﹞ Tissot, B.P., Welte, D.H., ―Petroleum formation and occurrence;a New approach to oil gas exploration‖, 699, Berlin, Heidelberg, NewYork, 1984.
﹝34﹞ 謝慧禎,“石油系統之有機材料與熱成熟度特性探討”,國立中央大學應用地質研究所,碩士論文,民國九十三年。
﹝35﹞ Davis, A., ―The reflectance of coal. In: Karr, C., Jr. (eds.) :Analytical Methods for Coal and Coal Products. Academic Press, Inc.‖, 27-8, 1978.
﹝36﹞ 陳佳芬,―台灣中新世石底層煤中硫及微量元素含量之沈積涵義‖,國立中央大學地球物理研究所,碩士論文,民國九十年。
﹝37﹞ Van Krevelen, D. W., ―Elsevier Scientific Publishing Co., Amsterdam-London-New York-Princeton‖, Coal, 1961.
﹝38﹞ Espitalie J., La Porte J. L., Madec M., Marquis F., Le Plat P., Paulet J., and Boutefeu A., ―Methode rapide decaracterisation des roches meres de leur potential petrolier et de leur degre d’evolution.‖ Revue l’Inst. Francais du Petrole, 32(1), 23-42, 1977.
﹝39﹞ Teichmuller, M., and Durand, B. ―Fluorescence microscopical rank studies on liptinites and vitrinites in peat and coals, and comparison with results of the Rock-Eval pyrolysis.‖ International Journal of Coal Geology, 2, 197-230, 1983.
- 83 -
﹝40﹞ Bostick, N.H., and Daws, T.A., ―Rock-Eval pyrolysis of 142 diverse U.S. coals—methods and comparison with classical chemical and industrial coal data.‖ U.S. Geology, Open File Report in preparation, 1994.
﹝41﹞ Behar F., Beaumont, V., and De B. Penteado H. L., ―Rock-Eval 6 Technology: Performances and developments, Oil and Gas Science and Technology-Rev. IFP‖, 56(2) , 111-134, 2001.
﹝42﹞ Sykes R., and Snowdon L.R., ―Guidelines for assessing the petroleum potential of coaly source rocks using Rock-Eval pyrolysis‖, Organic Geochemistry, 33, 1441-1455, 2002.
﹝43﹞ Waple, D.W., ―Geochemistry in petroleum exploration, D. Reidel Publishing Co‖, Dordrecht Boston Lancaster, 232, 1985.
﹝44﹞ Magoon, L.B., Dow, W.G., ―The petroleum system-from source to trap‖, The American Association of Petroleum Geologists, 95-97, 1994.
﹝45﹞ Gamson P. D., Beamish B. B. and Johnson D.P.,“Coal microstructure and micropermeabiblity and their effects on natural gas recovery”, Fuel, 72, 87-99, 1993.
指導教授 蔡龍珆(Loung-Yie Tsai) 審核日期 2012-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明